

The "Dead Sea" project

- The overall objective is: to establish a scientific basis for a "more sustainable" water and water-related land management
 - Divided in a physical, socio-economic and governance subsystems
 - Development of GIS-based database
 - Development of "realistic" scenarios till 2020
 - Development of a quantitative computer model
- System analysis as main approach
 - To analyse the system structure and behaviour
 - To calculate scenarios till 2020
- Modelling future development possibilities
 - "Real" complex systems have many uncertainties
 - "Real" complex systems have many possible developments
 - Scenarios are helpful to reduce uncertainty and visualize possible future trends

© Gebetsroither et al. (systems research)

MEDAQUA Conference, Amman, 14-15 June 2004

Content

- The "Dead Sea" project
- Introduction to System Dynamics
- Causal-Loop Diagrams (CLD)
- Main types of system behaviour
- CLD: physical and socio-economic subsystem
- Why external correctives often fail
- Effects of delays in feedback loops
- Conclusion

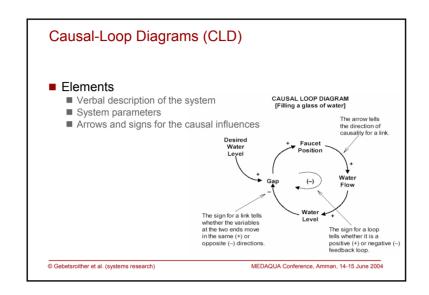
© Gebetsroither et al. (systems research)

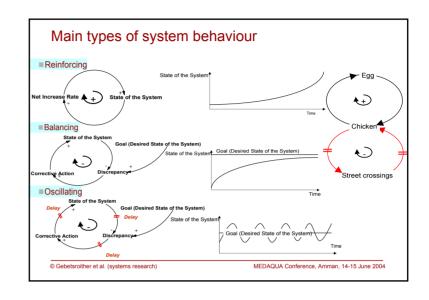
MEDAQUA Conference, Amman, 14-15 June 2004

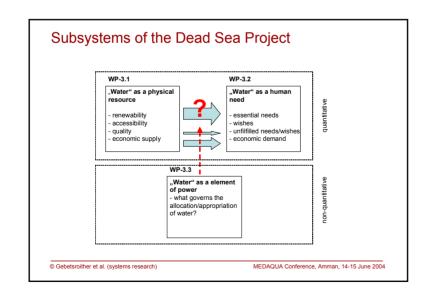
Introduction to System Dynamics

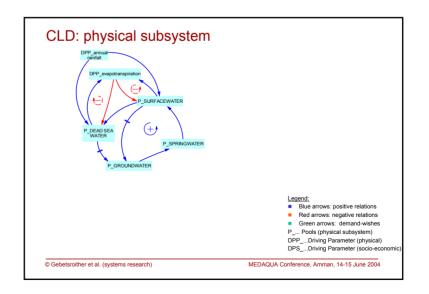
- Developed in the 60ies by J.W. Forrester at the MIT
 - Analysed oscillating production by General Electrics USA
 - Industrial Dynamic 1961, Principle of systems 1968

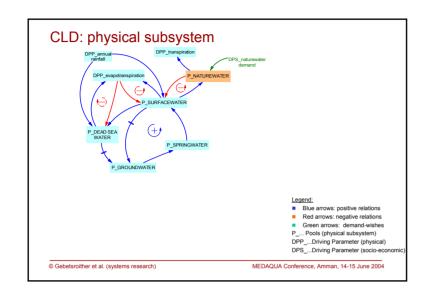
Basic principles

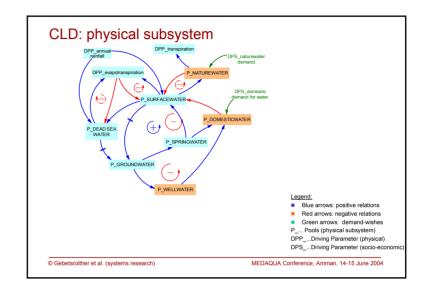

- Thinking in dynamical processes over time
- Thinking in models / awareness of systems structure
- Qualitative analysis of systems with Causal-Loop Diagrams
- Quantitative computer modelling with Stock-Flow Diagrams
- Steering of systems

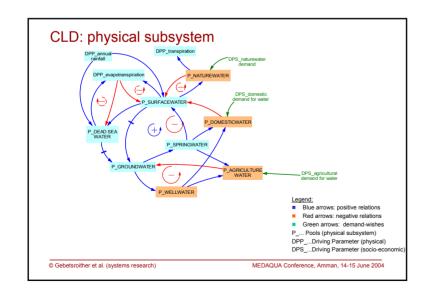

Applications

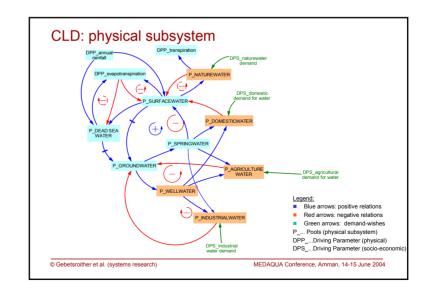

- Club of Rome "World" model (Meadows et al. 1972)
- Biology, ecology, economics, education, engineering, medicine, public administration and policy design etc.

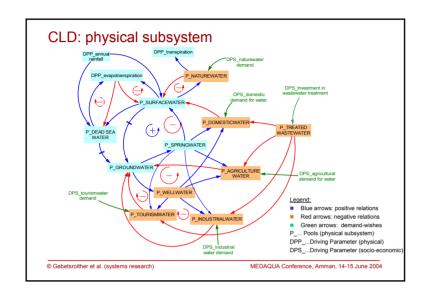

© Gebetsroither et al. (systems research)

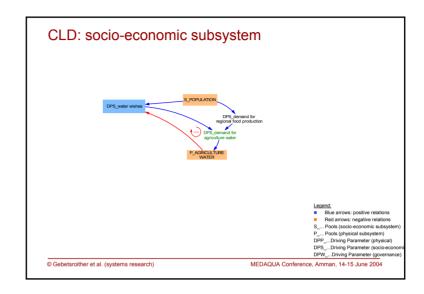

MEDAQUA Conference, Amman, 14-15 June 2004

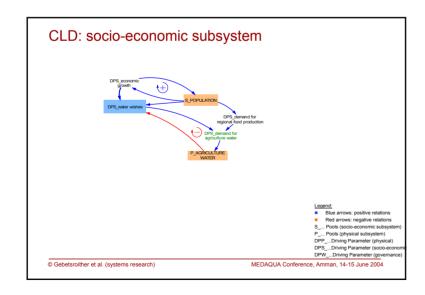


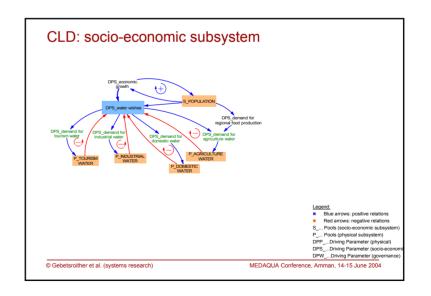


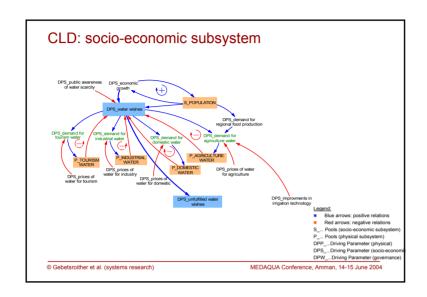


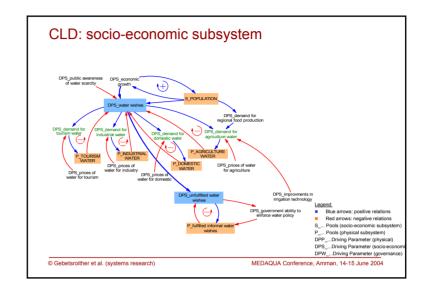


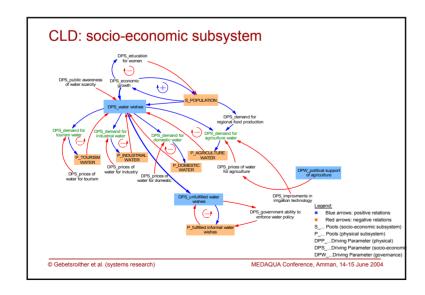


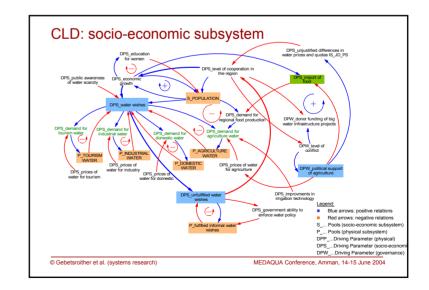


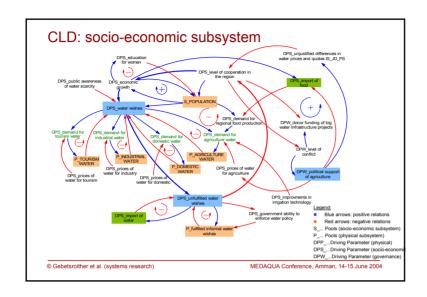


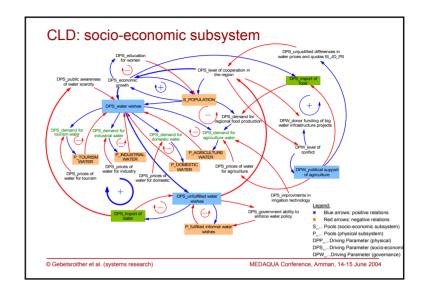












Why external correctives often fail

Examples

- Import of water through Red-Dead or Med-Dead connections
 - Consumer habits might change even from the day of construction decision on
 - Long construction time (10-15 years)
 - Strong disturbance of system (ecosystem)
 - Shift of burden: Short-term advantages may cause long-term disasters
- Increase of wastewater treatment
 - Willingness to use the water in agriculture is essential
 - Negative influences to groundwater from wastewater (delay in effects)
- Increase of water price for agriculture
 - Informal use; leaky pipelines; clientilism-nepotism
 - Growing population needs more food
 - Level of regional cooperation strongly influences role of agriculture (importexport)

© Gebetsroither et al. (systems research)

MEDAQUA Conference, Amman, 14-15 June 2004

Effects of delays in feedback loops

- Shower in a hotel: mixing warm and cold water
 - Short-term: faucet changes show no effects → more and more is changed
 - Mid-term: water turns to hot or to cold
 - Long-term: oscillating system around individual optimum level

■ Blocking of Inflows to Dead Sea

- Short-term: no visible consequences
- Mid-term: sinkholes, groundwater level and quality changes
 - Positive feedback induces exponential growth (increased dynamic)
 - Corrective measures also have delays before effects can be seen
- Long-term: possible irreversible destruction of ecosystem

■ Import of water Med-Dead, Red-Dead

- Short-term: decision of construction influences behaviour of actors
- Mid-term: increase of water availability creates additional water wishes, external dependence (water from outside)
- Long-term: unpredictable changes for the system

© Gebetsroither et al. (systems research)

MEDAQUA Conference, Amman, 14-15 June 2004

Conclusion

General

- System dynamic approach provides insight in structure of system
- Causal-Loop Diagrams help to visualize system and system behaviour
- Structure shapes behaviour
- Delays hide cause-effect relations
- Within unknown complex systems: it is often better to set small changes and analyse effects (wait for the feedback)
- Complex systems can only be managed in an adaptive way
 - Monitoring of key parameters and indicators is necessary

■ Insights for the Dead Sea water management

- More systemic investigations of the system structure and behaviour are necessary
- Short-term solutions have to be analysed more deeply for consequences
- Actors have to be involved in system analysis as well as in management decisions
 - Insights in system behaviour creates acceptance for necessary decisions
 - Actors have to understand in general what their actions cause (feedbacks)
- Measures like increasing price for water might have not the intended effects → development of integrated management measures

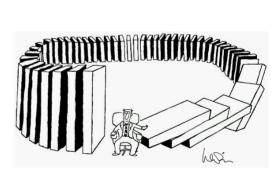
© Gebetsroither et al. (systems research)

MEDAQUA Conference, Amman, 14-15 June 2004

References

- Dörner, D. 1989: The Logic of Failure. Philosophical Transactions of the Royal Society of London, Vol. B 327. (1990).
- Forrester, J. W. 1961: Industrial Dynamics, The MIT Press, Cambridge, Massachusetts. 1961.
- Meadows, Donella H., et al. 1972: The Limits to Growth, 205 pages, Universe Books, 381 Park Avenue South, New York, NY 10016.
- Richardson Georg, P. 1986: Problems with Causal-Loop Diagrams, System Dynamics Review 2 (no. 2, Summer 1986):158-170
- Senge, P. 1990: The Fifth Discipline. New York: Doubleday.
- Sterman, J. 2000: Business Dynamics, Systems Thinking and Modelling for a Complex World. MCGraw-Hill, 2000, 982pp
- For more Systems papers and materials: visit the website www.guenther.ossimitz.at

© Gebetsroither et al. (systems research)


MEDAQUA Conference, Amman, 14-15 June 2004

"I also have it, Sven -- this silly feeling, that we are driving in a circle!"

© Gebetsroither et al. (systems research)

MEDAQUA Conference, Amman, 14-15 June 2004

Thank you for your Attention!

© Gebetsroither et al. (systems research)

MEDAQUA Conference, Amman, 14-15 June 2004